# Import necessary modules

# Import necessary modules
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
import numpy as np
import matplotlib.pyplot as plt

irisData = load_iris()

# Create feature and target arrays
X = irisData.data
y = irisData.target

# Split into training and test set
X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size = 0.2, random_state=42)

# Setup arrays to store train and test accuracies
neighbors = np.arange(1, 9)
train_accuracy = np.empty(len(neighbors))
test_accuracy = np.empty(len(neighbors))

# Loop over different values of k
for i, k in enumerate(neighbors):
        # Setup a k-NN Classifier with k neighbors: knn
    knn = KNeighborsClassifier(n_neighbors=k)
     # Fit the classifier to the training data
    knn.fit(X_train, y_train)
   
    # Compute training and test data accuracy
    train_accuracy[i] = knn.score(X_train, y_train)
    test_accuracy[i] = knn.score(X_test, y_test)

# Generate plot
plt.plot(neighbors, test_accuracy, label = 'Testing dataset Accuracy')
plt.plot(neighbors, train_accuracy, label = 'Training dataset Accuracy')

plt.legend()
plt.xlabel('n_neighbors')
plt.ylabel('Accuracy')
plt.show()

Comments

Popular posts from this blog

Characteristics or researchers

Neo4j

Write a python program to implement multiple linear regression for given dataset