# importing required libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
#import the breast _cancer dataset
from sklearn.datasets import load_breast_cancer
data=load_breast_cancer()
data.keys()
# Check the output classes
print(data['target_names'])
# Check the input attributes
print(data['feature_names'])
# construct a dataframe using pandas
df1=pd.DataFrame(data['data'],columns=data['feature_names'])
# Scale data before applying PCA
scaling=StandardScaler()
# Use fit and transform method
scaling.fit(df1)
Scaled_data=scaling.transform(df1)
# Set the n_components=3
principal=PCA(n_components=3)
principal.fit(Scaled_data)
x=principal.transform(Scaled_data)
# Check the dimensions of data after PCA
print(x.shape)
# Check the values of eigen vectors
# prodeced by principal components
principal.components_
plt.figure(figsize=(10,10))
plt.scatter(x[:,0],x[:,1],c=data['target'],cmap='plasma')
plt.xlabel('pc1')
plt.ylabel('pc2')
# import relevant libraries for 3d graph
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(10,10))
# choose projection 3d for creating a 3d graph
axis = fig.add_subplot(111, projection='3d')
# x[:,0]is pc1,x[:,1] is pc2 while x[:,2] is pc3
axis.scatter(x[:,0],x[:,1],x[:,2], c=data['target'],cmap='plasma')
axis.set_xlabel("PC1", fontsize=10)
axis.set_ylabel("PC2", fontsize=10)
axis.set_zlabel("PC3", fontsize=10)
# check how much variance is explained by each principal component
print(principal.explained_variance_ratio_)
Comments
Post a Comment