Write a python program to implement polynomial regression for given dataset.
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
#Importing the dataset
datas=pd.read_csv('H:\\ML_Practical\\CSV Files\\data1.csv')
print(datas)
print(datas.head())
# Dividing the dataset into 2 components
X = datas.iloc[:, 1:2].values
y = datas.iloc[:, 2].values
# Fitting Linear Regression to the dataset
from sklearn.linear_model import LinearRegression
line = LinearRegression()
line.fit(X, y)
# Visualising the Linear Regression results
plt.scatter(X, y, color = 'blue')
plt.plot(X,line.predict(X), color = 'red')
plt.title('Linear Regression')
plt.xlabel('Temperature')
plt.ylabel('Pressure')
plt.show()
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree = 8)
X_poly = poly.fit_transform(X)
lin2 = LinearRegression()
lin2.fit(X_poly, y)
plt.scatter(X, y, color = 'blue')
plt.plot(X, lin2.predict(poly.fit_transform(X)), color = 'red')
plt.title('Polynomial Regression')
plt.xlabel('Temperature')
plt.ylabel('Pressure')
plt.show()
Comments
Post a Comment